

Developmental Toxicity Models for the ToxCast Compound Library

SOL-NC-12-00024 http://www.epa.gov/oamrtpnc/1200024/index.htm National Center for Computational Toxicology

The views expressed in this presentation are those of the presenter(s) and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Computational Toxicology:

high-throughput (HTS) paradigm

- EPA's ToxCast research now providing HTS data for biological profiling >1,060 chemicals across >650 in vitro assays
- computational models integrate data and knowledge of target pathways and networks associated with adverse outcomes
- in vitro data from assays at cellular/molecular scale → predict and model the in vivo response at tissue/organismal scale

Current ToxCast HTS assay portfolio:

>1100 readouts / effects

Assay Provider

ACEA
Apredica
Attagene
BioSeek
CellzDirect
NCGC/Tox21
NHEERL MESC
NHEERL NeuroTox
NHEERL Zebrafish
NovaScreen
Odyssey Thera

Biological Response

cell proliferation and death cell differentiation mitochondrial depolarization protein stabilization oxidative phosphorylation reporter gene activation gene expression (qNPA) receptor activity receptor binding

Target Family

Response Element
Transporter
Cytokines
Kinases
Nuclear Receptor
CYP450 / ADME
Cholinesterase
Phosphatases
Proteases
XME metabolism
GPCRs
Ion Channels

Assay Design

viability reporter
morphology reporter
conformation reporter
enzyme reporter
membrane potential reporter
binding reporter
inducible reporter

Readout Type

Single Multiplexed Multiparametric

Cell Format

Cell free
Cell lines
Primary cells
Complex cultures
Free-living embryos

Species

Human
Rat
Mouse
Zebrafish
Sheep
Boar
Rabbit
Cattle
Guinea pig

Tissue Source

Lung Breast Liver Vascular Skin Kidney Cervix Testis Uterus Brain Intestinal Spleen Bladder Ovary **Pancreas** Prostate Inflammatory Bone

Detection Technology

qNPA and ELISA
Fluorescence & Luminescence
Alamar Blue Reduction
Arrasyscan / Microscopy
Reporter gene activation
Spectrophotometry
Radioactivity
HPLC and HPEC
TR-FRET

1st generation ToxCast predictive models

Endpoint-based models

liver tumors: Judson et al. 2010, Env Hlth Persp 118: 485-492

hepatocarcinogenesis: Shah et al. 2011, PLoS One 6(2): e14584

hallmarks of cancer: Kleinstreuer et al. 2012, submitted

rat fertility: Martin et al. 2011, Biol Reprod 85: 327-339

rat-rabbit prenatal devtox: Sipes et al. 2011, Toxicol Sci 124: 109-127

zebrafish vs ToxRefDB: Sipes et al. 2011, Birth Defects Res C 93: 256-267

Pathway-based models

endocrine disruption: Reif et al. 2010, Env Hlth Persp 118: 1714-1720

microdosimetry: Wambaugh and Shah 2010, PLoS Comp Biol 6: e1000756

mESC differentiation: Chandler et al. 2011, PLoS One 6(6): e18540

hESC metabolomics: Kleinstreuer et al. 2011, Toxicol Appl Pharm 257: 111-121

HTP risk assessment: Judson et al. 2011, Chem Res Toxicol 24: 451-462

angiogenesis: Kleinstreuer et al. 2011, Env Hlth Persp 119: 1596-1603

Prediction model: prenatal developmental toxicity

Feature	Description	Weight
RAR	Retinoic Acid receptor	0.58
GPCR	G-Protein-Coupled Receptors	0.55
TGFβ	Transforming Growth Factor β	0.38
MT	Microtubule organization	0.30
SENS_CYP	Cytochrome P450 (sensitive)	0.26
AP1	Activator protein 1	0.24
SLCO1B1	Organic anion transporter 1B1	0.11
CYP	CYPs (other)	0.06
HLA-DR	MHC complex	-0.38
PXR	Pregnane X receptor	-0.24
IL8	Interleukin 8	-0.23
PGE2	Prostaglandin E2 response	-0.18

Feature	Description	Weight
CCL2	Chemokine ligand 2 (MCP1)	1.15
IL	Interleukin (1a and 8)	0.39
CYP	Cytochrome P450	0.24
TGFβ	Transforming Growth Factor β	0.28
MESC	Mouse ES cells (J1)	0.13
SULT2A1	Sulfotransferase	-0.26
PGE2	Prostaglandin E2 response	-0.15

GO BIOLOGICAL PROCESS Feature Relations Map

Many features can be mapped to vascular development (pVDCs)

71% balanced accuracy

Rat Model

pVDC ranking: 1060 compounds

Thalidomide analogue - disrupts vascular development 5HPP-33 (0.591)

ToxPi for vascular development

Herbicide/weed control - acetohydroxyacid synthesis

Imazamox (0.005

SOURCE: Kleinstreuer et al. (in preparation)

Preliminary result: vasculogenesis

ToxCast prediction

VT simulation

In vitro qualification

Preliminary result: VEGF-EGFP transgenic zebrafish

- ToxCast pVDC (predicted positive)
- ToxCast non-pVDC (predicted negative)

pVDC	angiodysplasia	LEC
Pyridaben Diniconazole Tobupirimifos S-Bioallethrin Rotenone Pyraclostrobin Trifloxystrobin	spacey caudal vein spacey caudal vein spacey caudal vein vascular dysmorph vascular dysmorph vascular dysmorph vascular disruption	<1 uM 8 uM 40 uM 0.03 uM 0.03 uM 0.25 uM 0.35 uM
lmazapyr Imazalil Pymetrozin	no vascular phenoty no vascular phenoty no vascular phenoty	ype

SOURCE: T Tal, S Padilla – EPA/NHEERL C McCollum, M Bondesson – U Houston

A developmental AOP: children of thalidomide

CRBN cereblon (proteasome)

cell-cell signaling molecular (FGF) gradients

cellular behaviors pathway dysregulation

embryonic vasculature vascular disruption

early limb-buds disruption of outgrowth

birth defects limb malformations

Virtual Embryo – limb development module

vE-LM.3 (48,000 MCS @ 1,000 MCS/hr)

Virtual Embryo – limb development module

ISH (mouse literature) vs vE-LM.3 at 40K MCS

Simulating chemical injury: excessive cell death

mESC data translated into dynamic simulation

Responsiveness to SOL-NC-12-00024:

- Assays to determine the effects of ToxCast compounds for features relevant to developmental processes and toxicities.
- Features should relate directly to morphological defects that manifest during prenatal or early postnatal life.
- Parameters should provide broad coverage of metabolic and/or regulatory pathways important for embryogenesis or early postnatal development.
- Potential pathway-level targets leading to developmental defects relevant to the human condition.
- Multiple awards could be made to cover the scope and breadth of developmental pathways, processes, and toxicities.

EPA's Virtual Embryo

http://www.epa.gov/ncct/v-Embryo/

- Data needs to support computational models for predictive toxicology in developing systems include, but are not necessarily limited to assay platforms that:
- generate relevant data to enhance predictive models of developmental toxicity, expanding the ToxCast assay portfolio.
- 2. confirm or qualify results of the predictions and provide mechanistic support for model assessment.

Assay technologies might include, for example:

- stem cell (ES, iPS) growth and differentiation
 - PATHWAYS & PROCESSES
 - SELF-RENEWAL & PLURIPOTENCY
 - LINEAGE DETERMINATION & DIFFERENTIATION
 - GENOMICS & EPIGENOMICS
 - METABOLOMICS
- small model organisms such as ZFE
 - CELLULAR NETWORKS & CELLULAR IMAGING
 - LESION PROPAGATION & DYSMORPHOGENESIS
 - MORPHOGENETIC INTERACTIONS & MOVEMENTS
 - GENOMICS & EPIGENOMICS
 - METABOLOMICS
- embryological and 3D culture models
 - TISSUE FUSION & HETEROTYPIC INTERACTIONS
 - IMMUNOHISTOCHEMISTRY & IN SITU HYBRIDIZATION
 - GENOMICS & EPIGENOMICS
 - METABOLOMICS

